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1. Phys. A :  Math. Gen. 23 (1990) 2273-2286. Printed in the UK 

Braid group representation associated with the 10-dimensional 
representation of SU (5) and its Yang-Baxterisation 

MO-Lin Getll, Leh-Hun Gwat, Fan Pia05 and Kang Xueg 
t Institute of Theoretical Physics, SUNY at Stony Brook, Stony Brook, NY 11794-3840, 
USA 
$ Department of Mathematics, Rutgers University. New Brunswick, NJ 08903, USA 
0 Theoretical Physics Division, Nankai Institute of Mathematics, Tianjin 300071, People's 
Republic of China 

Abstract. A braid group representation and the corresponding q-exterior algebra associated 
with the IO-dimensional representation of SU(5) are calculated. The method involves 
consideration of weight conservation, Casimir eigenvalues and the property of Markov 
trace for Jimbo-Reshetikhin-type solutions. Applying a recently developed procedure to 
this spectral-independent solution to the Yang-Baxter equation, the trigonometric spectral- 
dependent solution is found. 

1. Introduction 

Remarkable progress has been made in the derivation of trigonometric solutions of 
the quantum Yang-Baxter equations (YBE) [l-51 associated with classical Lie algebras. 
The sl(2) case has been solved for arbitrary representations [6]; in addition, the 
spectral-dependent solutions associated with the fundamental representation of A:'), 
BA1), CA'), Dill ,  A?-,, A:) and Dl','+, have been solved by Jimbo [7], and recently G, 
by Kuniba [8], on the basis of quantum groups (QG). However, this beautiful theory 
does not automatically extend to higher representations. Recently, Reshetikhin [9] 
gave a general method for formulating the spectral-independent solutions associated 
with an arbitrary representation of a classical Lie algebra; he showed that the braid 
group representation (BGR) for any simple Lie algebra can be calculated based on the 
corresponding Casimir eigenvalues. (This approach is closely related to CFT through 
Witten's discussion [lo,  1 1 3 . )  This procedure, however, involves computing the q- 
analogue Clebsch-Gordan coefficient, which become cumbersome for non-fundamental 
representations. 

In [12], a systematic approach was proposed for practical calculation of the spectral- 
dependent solutions of YBE associated with a higher representation of a simple Lie 
algebra. This approach consists of two essential steps: (i) calculate the solution of the 
BGR, based on the theorem proved in [9], but without calculating q-Clebsch-Gordan 
coefficients [ 131 ; (ii) 'Yang-Baxterise' these solutions, i.e., perform a 'deformation' to 
the spectral dependent solutions; here a hint from Jimbo's work has been used [6,12]. 
In the present work, this procedure is illustrated through an explicit calculation; we 
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apply it to the case of the 10-dimensional representation of SU(5). An outline of the 
procedure is given in the following. 

The objective is to solve the spectral-dependent YBE 

(Rj , (X)  QD 1)(1 QD R,,(xy))(R,,(x) QD 1) = (1 8 %3(Y))(Rj+Y) QD 1)(1QD R,3(x)) (1.1) 

where x , y  are related to the usual spectral parameters, U ,  by x = e-u. In addition, the 
unitarity condition 

R(x)R(x-') = p(x)l (1.2) 

and the 'initial' condition 

R(1) a I (1.3) 

are imposed. The unitarity condition is satisfied by all the solutions found by Jimbo [7] ; 
and the initial condition corresponds to the physical requirement that the R(x)-matrix, 
which is related to k(x) by h(x) = PR(x) and P ( X  QD Y )  = Y @ X ,  is reduced to a 
permutation in this limit [14]. The corresponding x-independent solution, S = R(O), as 
U + CO, satisfies 

(1.4) 
PVP P'VP 

This is the equation for a BGR. 
The first part of the calculation is to solve equation (1.4) associated with a given 

representation of a simple Lie algebra R. The first task is to suitably label the matrix S; 
this is subject to the extra conservation laws one wishes to impose. Here we consider the 
'six-vertex-type' solutions, characterised by 'weight conservation'. This consideration 
fixes the structure of S and determines part of the matrix elements; in general S is 
decomposed into a block-diagonal matrix with a large number of vanishing elements. 
This step does not involve the YBE. 

Reshetikhin [SI proved the following: given the standard decomposition into 
irreducible subspaces of R QD R 

(1.5) R 8 R = @ ; E , .  

The corresponding BGR, S, can be decomposed into 

N 

s = p i p ,  
i= 1 

where A, are the unequal eigenvalues of S ,  and Pi the corresponding projectors; the 
eigenvalues can immediately be computed by the classical Casimirs with the simple 
formula, in our notation 

(1.7) 

where CR and C,, are the Casimirs of the representation R and E,, respectively, and 
the + (-) sign is chosen if the representation is symmetric (antisymmetric). 

The non-zero elements of S are then partially fixed by computing the determinant 
and the trace of each submatrices, using the known eigenvalues computed from (1.7) 
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and the Markov trace property [9, 151. Finally the rest of the undetermined elements 
are found by direct substitution in (1.4), via a diagrammatic expansion [16]. 

Next we apply the Yang- 
Baxterisation scheme of [17] to generate the spectral-dependent solutions of YBE, 
namely R ( x )  with arbitrary x .  

We remark that the above procedure has been shown to be successful not only 
for the Jimbo-Reshetikhin (JR)-type solutions, but also for non-JR-type solutions; 
the former includes higher-dimensional representations such as the eight-dimensional 
representation of B3 and the six-dimensional representation of SU(3) [13], and the 
latter includes new solutions for B2, C, and D, [18]. 

The rest of this paper is organised as follows. In section 2, we perform some 
standard group-theoretic calculation for the 10C310 representation of SU(5) to determine 
the general structure for S constrained by the condition of weight conservation; here 
we assign a ‘pseudospin’ labelling to the 10-dimensional representation of SU(5). Next, 
in section 3, we determine S which satisfies the spectral-independent YBE, or equation 
(1.4); Reshetikhin’s theorems are exploited to simplify the calculation. The results 
are contained in (2.4), (2.5), (3.8) and (3.9). The eigenvectors of S are computed in 
section 4, and are given in (4.1) and (4.2); we also check the classical limit and find 
complete agreement with general theory of QG [9]. The q-analogue algebraic structure 
generated by S are given in section 5. Here the usual q-analogue algebra found for 
fundamental representations are reproduced, but some new commutation relations 
peculiar to the higher representation are also found, as shown in (5.8)-(5.10). In the 
last section, we perform the Yang-Baxterisation scheme to find R(x), the solution to the 
spectral-dependent YBE; the results are contained in (6.1 1)-(6.15). Some illustrations 
for section 6 are given in the appendix. A note on the notation used: with the exception 
of (6.14), blank spaces in all matrices represent zero elements. 

The above steps produce an S satisfying (1.4). 

2. Weight conservation 

The IO-dimensional representation of SU(5) is characterised by the 10 weights w I ;  they 
are given as follows in the Cartan-Weyl basis of the five-dimensional root space: 

w1 = f(3,3,-2,-2,-2) 

w 3  = f(3,-2,-2,3,-2) 

~2 = 4(3,-2,3,-2,-2) 

~4 = f(-2,3,3,-2,-2) 

w5 = i (3, -2, -2, -2, 3) 

wg = f(-2,-2,3,-2,3) 

w6 = f (-2, 3, -2, 3, -2) 

~ 1 0  = 3(-2,-2,-2,3,3). 1 

(2.1) 

w7 = :(-2,-2,3,3,-2) ~g = f(-2,3,-2,-2,3) 

The BGR S is a 100x100 matrix acting on the 10 8 10 tensor space. Since we 
impose the condition of weight conservation, it is convenient to label the states in 
the 10-dimensional representation with a ‘pseudospin’, in analogy with the quantum 
number s, for the well known SU(2) case. This labelling is designed to reflect the 
following conditions : 
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These are all the conserved pairs. Up to a factor, the above determines the pseudospin 
asignment ; we set 

9 5 3 - I -- 1 -- 3 -  Pseudospin 2 2 2 2 2 2 

(2.3) 

I t  is easy to check that they satisfy (2.2). Note that, unlike in the case with 
fundamental representation, these pseudospins are not uniformly distributed - f and -: do not exist. Thus the requirement that the total pseudospins be conserved forces 
the matrix S into block-diagonal form 

(2.4) 

where A, are the submatrices acting on the subspace in which the total pseudospin is k .  
For example A-, acts on the three-dimensional space consisting of (-;, -?), (-;, -;) 

By standard method in group representation theory, these submatrices are found to 
have three different eigenvalues, E, , ,  i,, i., with multiplicity n , ,  n2 and n3, respectively; 
denoting this as (n l ,  n2, n3) we have 

and (-T,-j). I I  3 

It is easy to check that the total multiplicities of E.,,E.2,E.3 are 50,45 and 5, respectively. 
This is expected from the decomposition into irreducible subspaces of SU(5) 

10 63 10 = 50, + 45, + 5 , .  (2.6) 

Thus the three eigenvalues correspond to the 50-dimensional symmetric, 45-dimensional 
antisymmetric and five-dimensional symmetric subspces, respectively. 

The weight conservation (2.2) is more restrictive than their pseudospin assignment 
suggests; for example, (;,--;) and (;,-;) both have pseudospin 0, but the correspond- 
ing weights are not conserved, wg + w ,  # w 5  + w6.  Therefore, many elements in each 
submatrix A, vanishes by weight conservation. For those A, with only two unequal 
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eigenvalues, all the non-zero elements lie along the skew diagonal and the lower half 
of the diagonal; for example 

* 

* 
* * 

* * 

Note that we follow the convention of ordering the state according to the magnitude of 
the first pseudospin. The submatrices A+4, A,, A, and A-, contain the third eigenvalue, 
and do not have the above form; the upper-left triangle of these matrices still vanishes 
as in (2.7), but the lower-right triangle do not vanish in general. In addition, A,,A, 
and A-, are essentially direct sums: the largest submatrix A-, has the form 

* 
* e  

0 
* * *  

0 

* * * *  
0 0 

* * * * *  
* *  * * * *  

and the eight-dimensional A,, A, are obtained by removing the centre row and column 
from (2.8). We shall refer to the first category as the fundamental-type submatrices, 
since this is characteristic of the fundamental representations of SU(n) .  

3. The braid group representation 

The 100x100 matrix S has been greatly simplified by the weight conservation consid- 
eration of section 2; so far, the YBE has not been involved. Next we find conditions to 
reduce the number of independent elements of S. 

The Casimirs of each subspace in the decomposition (1.5) can be easily calculated 
by standard method; then by equations (1.5)-( 1.7), we immediately find that 

(3.1) 

For simplicity, we renormalise S so that the eigenvalues become 

where t is an arbitrary (q-analogue) parameter in place of q. Since the eigenvalues of 
each submatrix of S are known from (2.5), the trace and the determinant impose two 
conditions on the non-zero elements of each A, in terms of the parameter t .  
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Next we use the requirements of the Markov trace to impose further conditions. 
It is known [9] that for JR-type solutions of the BGR, following property holds: there 
exists an h-matrix given by 

h = 8 t - 2 ( W o " ! )  
ab ab 

where g is the half-sum of positive roots, such that 

(3.3) 

(3.4) 

where f ( t )  is independent of the index a. In the present case 

g = (2,1,0,-1,-2) (3.5) 

and hence 
2 2 4 6  h = diag(tP6, t-,, t -2 ,  t-', l , l , t  , t , t , t  ) .  

Thus we obtain another nine conditions for S. Note that the terms in (3.4) come from 
different submatrices. 

The remaining undetermined elements are calculated by explicit use of the YBE; we 
use an extended diagrammatic approach [I61 which involves calculating a few diagrams 
only. By this procedure we find the submatrices of S as follows: let 

(3.7) 2 w = l - t  z = l + t  

the fundamental-type submatrices have the form 

A 5 = [  t W t ,  (3.8) 

that is, all the non-zero diagonal elements are equal to w and the skew-diagonal 
elements equal t ,  except that the centre element is equal to 1 for odd dimensional 
matrices. The non-fundamental-type submatrix A-, is given by 

t 2  
t 2  tw 

t 
t 2  tw -t2w 

t 2  0 tw -t2w 

t 2  t W  tW W2 t3w 
t 2  tw -t*w -t2w t3w zw2 

1 

t W 

(3.9) 

The eight-dimensional A, and A, are obtained by removing the centre row and column; 
and the six-dimensional A,, are given by removing from (3.9) the lower-dimensional 
submatrices, i.e., by removhg the third, fifth and seventh rows and columns. 

We should emphasise that the above solution is only a JR-type solution. In principle, 
there may exist other solutions which are not of JR type. Next we check the classical 
limit and discuss the q-exterior algebraic structure of this solution [19]. 
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4. Classical limit 

The eigenvectors of S are calculated by computing those for the submatrices A,. For the 
fundamental-type submatrices, the eigenvectors are simple; arranging them in columns 
in the order that the A,-eigenvectors precede the +eigenvectors, we have, for example 

Note that the ordering of the columns is arbitrary, depending on how one orders 
the eigenvalues; here we adopt the ordering i.,, . . . , i2,. . . , i3. The even-dimensional 
submatrices have the same form, but do not contain the singlet state in the centre. It is 
easy to see that as t -t 1, every eigenvector is either symmetric (for i1) or antisymmetric 
(for ;.J, as expected, and is consistent with the multiplicity of ib, and A2,  as shown in 
(2.4). 

For the non-fundamental submatrices, we find for the six-dimensional submatrices 

L*4 = 

t 2 Z  0 0 t -2t2 1 
r t 2  o 1 2t3 -t 

- t2  t 1 0 wz t 2  
- t2 t -1  0 w z  t 2  

t3  1 0 - t2  -2t - 4 3  

\ z 0 0 -t 2t2 t 4  

(4.2) 

The eight(nine)-dimensional submatrices are simply a direct sum of this and a two- 
dimensional (and a trivial) fundamental-type submatrix. 

In the classical limit as t -t 1, the general theory for the JR-type solutions of YBE 
[9] requires that 

S 5 P ( l  + ( t  - 1)r) (4.3) 

where P is the permutation operator and r the Casimir operator. As a check, we can 
verify (4.3) for each submatrix. For example, we expand A, (the 6 x 6  submatrix in 
equation (3.9)) to the first order in t - 1 and factor out the permutation matrix P,, 
which is simply a skew-identity matrix, we find 

-1  1 -1  -1 1 0 
- 1 1 1 0  

A ,=P ,U+( t - l ) r4 )  r 4 = - 2 [  -1  -1  0 ), j) 
- 1  

(4.4) 

On the other hand, by setting t = 1 in L,, the normalised classical eigenvectors are 
simply 

1 4 - -(2,1,-1,-1,1,2) 
l,' - Jrz 
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1 

where 4 j . k  is the kth eigenvector associated with i j .  Note that the parity of 4 j . k  is even 
for j = 1,3 and odd for j = 2. It is easy to check that for any k 

for j = 1 
for j = 2 {: for j = 3 

( b j , k r 4 4 j , k  = 

in complete accord with the exponents appearing in (3.2). 

5. The q-exterior algebraic structure 

The BGR defines a q-exterior algebra through its decomposition into projection opera- 
tors, i.e. 

3 

s = C i i P i  
i= 1 

where i , ,  I ,  and i3 are given in (3.2) and Pi the projection operator given, in general, 
by 

(5.2) 

which projects out the eigenspace associated with Ai in the 10 8 10 dimensional 
representation. In the sector corresponding to Ai, the q-exterior algebra is obtained by 
~ 9 1  

(5.3) 

where the indices run through the 10-pseudospin assignment in section 2. Since 
we have computed all the eigenvectors of S ,  the projectors Pi can be expressed 
easily. Let v j , k j  denote the normalised column eigenvector associated with Ai in the 
submatrix A,, and j runs through the multiplicity in that submatrix and the row vector 
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vk = (X,XB,X,Xb,.  , .) corresponds to pseudospin assignment ((a, b),  (y,6), . . .) in A,. It 
is well known that 

k J  

Also, because the WiJ,& are orthogonal, equation (5.3) is equivalent to 

W .  .U, = 0 i = 1,2,3 

k =  11,lO ,..., -9,-11 a l l j .  

i , k j  k 

(5.4) 

(5 .5 )  

For the majority of the submatrices, the eigenvectors are decoupled, and hence 
we may separate the state vector accordingly; for example, referring to (4.1), 
we have = ( X 1 1 ~ 2 X - 1 ~ 2 , X - 1 ~ 2 X 1 1 ~ 2 )  + ( x 9 / 2 x 1 / 2 , x 1 / 2 x 9 / 2 )  + ( x 5 / 2 x 5 / 2 ) *  Clearly, 
all the eigenvectors related for the fundamental-type submatrices give rise to simple 
q-commutaion relations. This also applies to the low-dimensional sub-block of the non- 
fundamental-type A, ; only the six-dimensional sub-block of A,,, A,, A, and A-, may 
contain more complicated algebra. They are computed from equation (4.2) according 
to (5.5). The states affected are listed below (it is understood that the permuted states 
are included) : 

(a, b) (c, 4 ( e , f  1 
5 3  A,  : ( U  2 ’  -:) ( 2  2’ -1) ( 7 9  2 )  

To summarise the results, define the q-exterior commutator and anticommutator 

{ X ,  Y } ,  t X Y  + Y X  [ X ,  Y ] ,  X Y  - t Y X .  (5.7) 

In the A I  sector, X:  = 0 for all a, and {X,, X P } ,  = 0 for a > /?, except if (a, /?) is one of 
the case listed in (5.6); for those cases, they satisfy 

In the A2 sector, [X, ,XB] ,  = 0 for a > 8, unless (a,/?) is one of the cases listed in (5.6); 
for those cases, they satisfy 

Finally, the A3 sector consists only of those states listed in (5.6). They satisfy 

{Xb9Xo)~4 - t[Xc,Xd]t2 + t 2 { X e , X f } l  = 0. (5.10) 
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6. Yang-Baxterisation 

We have obtained the x-independent solution, S, of the YBE for the 10-dimensional 
representation of SU(5). Next we apply the result of [12] to produce the corresponding 
x-dependent solution, R(x), for the BGR given in section 3. A brief summary of this 
Yang-Baxterisation procedure is given below. 

For a BGR S associated with the fundamental representation, Jimbo [7] has shown 
that the corresponding R(x) has the form 

i= 1 

where N is the number of unequal eigenvalues of S and Pi are the corresponding 
projectors, and pi(x) is a polynomial in x of degree N - 1. In [12] it is shown that 
assuming the form (6.1) for the case of three unequal eigenvalues, only three possibilities 
are allowed which satisfy the unitarity condition, (1.2), and the initial condition, (1.3). 
They are 

If the three cases are substituted in the x-dependent YBE, the S must satisfy the 
following equation: 

where the 0 are functions of the S: 

0 3  = sisl,:si - si+ls;lsi+l 
0; = s;'s,+,sl:' - s,;sisl;; 
0, = sis,; - si+,s;l + s,:si - sl-'s. 1+1 

0, = si - si+, 
0' - s-1 - s-1 

1 -  i I +  1 
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where Si,Si+l are in the usual notation for braid groups such that the equation 
SiSi+lS, = Si+lS,Si+l is equivalent to equation (1.4). The f in (6.5) are functions of the 
eigenvalues which are given according to the cases as 

Case (a): 

Case (b): 

Case (c): 

, i.: 
- i., 

"1 f - _ _  
f 3  = 

4 i, E., 
A3 A 2  /.3 A3 

f 2  =-, ( 1  +, + , + 5) 

i. i. ' f '  - -1 
1.2 

f 3  = 2 3 -  * 

f 2  =-5 ( 1  + T- + , + - 
L2 jml A2 I., j.9 '.2 

(6.7) 

(6.9) 

Since this procedure is independent of representations, we can use it to Yang-Baxterise 
our BGR. 

We substitute our S matrix in (6.5)-(6.9) for the three cases and find that case 
(a) is satisfied. A diagrammatic method has been used to perform this rather tedious 
but straightforward calculation; some illustration is given in the appendix. A similar 
calculation can also be found in [12], where the six-dimensional representation of 
SU(3) was computed. 

Substituting (6.2) in (6.1) and using (5.2) we find an x-dependent solution to YBE 
for the 10-dimensional representation of SU(5). 

R(x) = Rlx(x - 1)S-I + 1 + 4 + 4 + 2 X I  - ,(x 1 - 1)s. (6.10) ( 1 3  1 3 )  A3 

The inverse S-I has the same block structure as S, and can be obtained from S 
by 'reflecting' each submatrix along the skew-diagonal and letting t -+ t-'. The matrix 
R(x) is obviously of the block-diagonal form 

(6.1 1)  
k=-I1 
kf-IO 
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where each submatrix Ri(x) corresponds to the submatrix A,; but the Ri(x) no longer 
have the lower-triangular form as Ai, although they remain symmetric. Corresponding 
to the fundamental-type A,, Ri(x) have the simple form, which we illustrate with R5(x) 

Mo-Lin Ge, Leh-Hun Gwa, Fan Pia0 and Kang Xue 

where 

p 2  = -t-'(x - ?-4)(X - 1) 

WO = (x - -t-4)(X - t-2) 

w2  = (x - - t - 2 ) .  

(6.12) 

(6.13) 

All the fundamental-type R,(x) are of the above form, except that the even-dimensional 
ones do not contain the singlet wo. The R,(x) corresponding to the non-fundamental- 
type A, include R+~(x),RO(X), R2(x) and k 1 ( x ) .  The largest submatrix is the 9 x 9  Rl(x); 
for simplicity we present only its lower-left triangle. ( Note that all R,(x) are symmetric.) 

X W I  
xu xw3 

xw2 
-Xf# X t 2 U  W I  

-XL# X t 2 U  P1 W1 

X t 2 U  p1 U U w3 

PI U -tu --tu t 2 U  x-lw, 

WO 

P2 w2 

P I  = t-2(x - -t-Z)(x - 1) 

w1 = x(l  - t-Z)*(l + t - 2 )  

w j  = (1 - t-2)*(x + t-2) 

= t-3(1- t-2)(X - 1 ) .  

(6.14) 

(6.15) 

As for the BGR, the eight-dimensional R2(x) and R,(x) are given by the above, except 
the centre row and column is removed; the six-dimensional k+4 can be obtained by 
further removing the two-dimensional fundamental-type submatrix. 

Thus we have found the x-dependent solution of YBE related to the 10-dimensional 
representation of SU(5). Using 

R(X)ij,kl = k(x)ij,,k (6.16) 

the Boltzmann weights for the corresponding vertex models are obtained. Since there 
are a total of 310 non-zero elements in R(x), this is a 310-vertex model. 
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We have shown by this particular example the process of generating the trigono- 
metric solution of the YBE for a given representation of a simple Lie algebra which 
has one-multiplicity decomposition. Our approach can be satisfactorily applied to non- 
fundamental representations, and seems to be more convenient than the method by 
fusion rule [21-231, because the q-analogue projectors are computed without using the 
corresponding q-analogue Clebsch-Gordan (CG) coefficient matrices. In addition, our 
approach has the advantage of being applicable to the computation of new solutions 
to be presented elsewhere; these new solutions cannot be obtained by the usual fusion 
rule. As an illustration consider the two-dimensional representation of SU(2) ; the 
standard solution is related to the CG decomposition 2 62 2 = 3 @ 1, whereas the new 
solution corresponds to the decomposition 2 62 2 = 2 @ 2, i.e., a free fermion model. 
(See [24] for discussions for the cases BA'), Cj') and Di').) 
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Appendix 

The verification of (6 .5)  for case (a) is done by a diagrammatical expansion. We give a 
brief description of the method here. 

In terms of components, the equation (6.5) and (6.6) contain six free indices, as 
shown in (1.4), which represent three in-state indices, a, 8, y and three out-state indices, 
K, E., w .  Because of the conservation condition, only the combinations satisfying 

are non-trivial. Now consider a non-trivial example: let 2 = K = i , P  = E. = - i , y  = 

0, is represented diagrammatically as 
w = - Z  2 ,  a nd represent S(S-') with a left (right) crossing; then the term SiS,\Si from 

1 3 3  
2 2 2  
- - -  - -  
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Consider the first crossing, . Since the total pseudospin is -1, we look for non-zero 
elements in (A-,):Y;j,-3,2); there are only three of them, i.e., (*, *) = ( -3  2 ’ 2  1) 3 (-1 2 ’ 2  5 )  3 or 
(-?, i), and the corresponding matrix elements are t 2 ,  tw and - f2w,  respectively. (See 
equations (3.9) and (2.3).) Thus the corresponding diagrammatic expansion is 

Next, we consider the second and third crossings in a similar manner; then the other 
terms in (6 .6)  are also expanded in the same way. All the expansions are substituted in 
(6.5) for cases (a), (b) and (c) to see if they are satisfied. The invalid cases are excluded 
once a contradiction is found, but the valid case must be satisfied by all possible in- 
and out-states. The procedure is straightforward but tedious. 

In fact, the present model has a typical quantum group structure for case (a), 
based on Jimbo’s loop algebra consideration with the largest root [ 6 ] .  The proof that 
(6.10) satisfies the YBE, based on general QG consideration, was given in [19]. Thus the 
diagrammatic expansion shown here can be considered a direct check of the general 
theory of Yang-Baxterisation. 
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